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Most studies of plant–animal mutualisms involve a small number
of species. There is almost no information on the structural orga-
nization of species-rich mutualistic networks despite its potential
importance for the maintenance of diversity. Here we analyze 52
mutualistic networks and show that they are highly nested; that is,
the more specialist species interact only with proper subsets of
those species interacting with the more generalists. This assembly
pattern generates highly asymmetrical interactions and organizes
the community cohesively around a central core of interactions.
Thus, mutualistic networks are neither randomly assembled nor
organized in compartments arising from tight, parallel specializa-
tion. Furthermore, nestedness increases with the complexity (num-
ber of interactions) of the network: for a given number of species,
communities with more interactions are significantly more nested.
Our results indicate a nonrandom pattern of community organi-
zation that may be relevant for our understanding of the organi-
zation and persistence of biodiversity.

S tudies of plant–animal mutualisms have traditionally focused
on highly specific interactions among a few species, such as

a plant and its pollinators or seed dispersers (1, 2). On the other
hand, some systems seem to involve a much larger number of
species, and some authors have used the term ‘‘diffuse coevo-
lution’’ to describe the coevolutionary process in such commu-
nities (3–5). The approach of diffuse coevolution, however, has
not provided any insight on the structural organization of
species-rich communities (6), yet this is a fundamental property
to understand coevolution in these species-rich assemblages.

Mutualistic networks can be depicted by a matrix of plant
species in rows and animal species in columns (ref. 7; Fig. 1). An
element aij of such a matrix is 1 if plant i and animal j interact,
and zero otherwise. In a perfectly nested matrix (8), each species
would interact only with proper subsets of those species inter-
acting with the more generalist species (Fig. 1a). On the other
hand, a mutualistic network would be assembled randomly if
each plant (animal) species interacts with a random set of the
total pool of animals (plants) (Fig. 1b). Nestedness entails a
nonrandom pattern of structure beyond the topological pattern
of connectedness frequently assessed in networks of ecological
interactions (9–11).

Here we analyzed 27 plant–frugivore networks and 25 plant–
pollinator networks illustrating a wide range of conditions of
species richness, taxonomy, latitude, and ecology (Table 1). Our
goal is to understand how mutualistic networks are assembled.
We report on the highly nested organization of mutualistic
networks and discuss the implications of nestedness for their
persistence and coevolution.

Materials and Methods
Measure of Nestedness. We estimated an index of matrix nested-
ness (N) by using NESTEDNESS CALCULATOR software. This
software was originally developed by W. Atmar and B. D.
Patterson in 1995 (AICS Research, University Park, NM; see ref.
8) to characterize how species are distributed among a set of
islands (8, 12, 13).

NESTEDNESS CALCULATOR first reorganizes the matrix by ar-

ranging rows (plants) and columns (animals) from the most
generalist to the most specialist in the way that maximizes
nestedness (8). Given a particular number of plants (P), animals
(A), and interactions (L), an isocline of perfect nestedness is
calculated for each matrix (Fig. 1c). For each plant species (row)
all of the absences of pairwise interactions before the isocline
and all of the observed interactions beyond the isocline are
recorded as unexpected. For each of these unexpected presences
or absences, a normalized measure of global distance to the
isocline is calculated (8), and these values are averaged. By using
an analogy with physical disorder, this measure is called tem-
perature, T (8), with values ranging from 00 to 1000. Because in
this paper we emphasize nestedness or order instead of disorder,
we define the level of nestedness, N, as: N 5 (100 2 T)y100, with
values ranging from 0 to 1 (maximum nestedness).

Null Models and Significance. To assess the significance of nest-
edness we have to compare the observed value with a benchmark
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Fig. 1. Plant–animal mutualistic interaction matrices. Numbers label plant
and animal species, which are ranked in decreasing number of interactions per
species. A filled square indicates an observed interaction between plant i and
animal j. a–c correspond to perfectly nested, random, and real mutualistic
matrices [plant–pollinator network of Zackenberg (J.M.O. and H. Elberling,
unpublished work)], respectively. Values of nestedness are N 5 1 (a), N 5 0.55
(b), and N 5 0.742 (P , 0.01) (c). The box outlined in a represents the central
core of the network, and the line in c represents the isocline of perfect
nestedness. On a perfectly nested scenario, all interactions would lie before
the isocline (on the left side).
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Table 1. Data sets analyzed in this article

Type Nestedness No. of species Latitude Ref.

Seed dispersal 0.762NS 28 Temperate 32
Seed dispersal 0.806** 40 Tropical 33
Seed dispersal 0.944* 54 Mediterranean 34
Seed dispersal 0.842** 78 Tropical 35
Seed dispersal 0.847* 26 Subtropical 36
Seed dispersal 0.679NS 19 Temperate 37
Seed dispersal 0.857** 33 Mediterranean P.J., unpublished
Seed dispersal 0.771* 32 Tropical 38
Seed dispersal 0.768** 86 Tropical 39
Seed dispersal 0.932** 209 Tropical 40
Seed dispersal 0.878** 46 Mediterranean P.J., unpublished
Seed dispersal 0.565NS 27 Tropical 41
Seed dispersal 0.936** 23 Temperate 42
Seed dispersal 0.848NS 13 Temperate 43
Seed dispersal 0.748* 25 Tropical 44
Seed dispersal 0.877** 64 Tropical 44
Seed dispersal 0.651** 64 Tropical 45
Seed dispersal 0.999NS 9 Mediterranean 34
Seed dispersal 0.853** 18 Mediterranean 34
Seed dispersal 0.984** 14 Mediterranean 34
Seed dispersal 0.866** 25 Mediterranean 34
Seed dispersal 0.921** 17 Mediterranean 34
Seed dispersal 0.996NS 10 Mediterranean 34
Seed dispersal 0.884NS 11 Mediterranean 34
Seed dispersal 0.897** 24 Mediterranean 46
Seed dispersal 0.958** 317 Tropical 47 and unpublished
Seed dispersal 0.716NS 25 Temperate 48
Pollination 0.960** 185 Temperate 49
Pollination 0.910** 107 Temperate 49
Pollination 0.925** 61 Temperate 49
Pollination 0.860* 142 Arctic 50
Pollination 0.742** 107 Arctic J.M.O. and H. Elberling, unpublished
Pollination 0.945** 110 Arctic 51
Pollination 0.911** 205 Mediterranean 52
Pollination 0.671NS 22 Tropical J.M.O., unpublished
Pollination 0.594NS 50 Temperate J.M.O., unpublished
Pollination 0.952** 84 Tropical J.M.O., unpublished
Pollination 0.828** 108 Temperate J.M.O., unpublished
Pollination 0.955** 251 Temperate 53
Pollination 0.955** 111 Arctic 54
Pollination 0.628NS 50 Temperate J.M.O., unpublished
Pollination 0.702NS 32 Tropical 55
Pollination 0.781NS 29 Arctic 56
Pollination 0.925** 97 Tropical 57
Pollination 0.940** 167 Temperate 58
Pollination 0.925** 180 Temperate 58
Pollination 0.736** 78 Temperate 58
Pollination 0.867** 40 Temperate 59
Pollination 0.874** 27 Tropical L. I. Eskildsen et al., unpublished
Pollination 0.871* 93 Tropical 60
Pollination 0.904* 117 Temperate 61
Pollination 0.975** 446 Temperate 62
Food web 0.678NS 20 Temperate 63
Food web 0.670NS 22 Temperate 63
Food web 0.507NS 16 Subtropical 64
Food web 0.607NS 12 Subtropical 64
Food web 0.724** 75 Temperate 65
Food web 0.774NS 78 Temperate 65
Food web 0.522NS 28 Temperate 66
Food web 0.772NS 59 Temperate 66
Food web 0.737NS 32 Temperate 66
Food web 0.856** 104 Tropical 67
Food web 0.547NS 64 Tropical 67
Food web 0.554NS 37 Temperate 68
Food web 0.942** 76 Temperate 68
Food web 0.826** 25 Temperate 69

No. of species, sum of animal and plant species. Food webs were decomposed in resource–consumer, bipartite graphs, so two or three different graphs can
be obtained from the same food web. The level of significance was tested against null model 2 (results are qualitatively similar for null model 1). *, P , 0.05;

**, P , 0.01; NS, not significant.
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provided by a null model. The goal is to test whether the
observed level of structure (in our case nestedness) can be
explained by simple rules (e.g., a derived probability of cell
occupancy). An intensive discussion has revolved around null
models and how conclusions on community structure may
depend on our choice of a null model (14–16).

NESTEDNESS CALCULATOR uses a null model in which each cell
in the interaction matrix has the same probability of being
occupied. This probability is estimated as the number of ‘‘1s’’ in
the original matrix divided by the number of cells (A 3 P). We
will refer to this as null model 1. This null model is very general,
and so deviations from this homogeneous benchmark could be
due to multiple factors, such as a different degree (some species
have more connections than others) (14, 16). Previous work has
shown that mutualistic networks have a variation in the number
of connections per species (degree) much larger than expected
by random (11). Because we want to look at a deeper level of
structure beyond the one depicted by the degree distribution, we
have considered a second null model. In our null model 2, the
probability of each cell being occupied is the average of the
probabilities of occupancy of its row and column. Biologically,
this means that the probability of drawing an interaction is
proportional to the level of generalization (degree) of both the
animal and the plant species. Interestingly enough, the results
here provided are very robust, and there are not strong quali-
tative differences for both null models (only 6 of 52 networks
changed in significance status from one model to the other).
Throughout the paper, we will present the results for null model
2, which yields the most conservative inference about the
significance of nestedness (16).

For each mutualistic matrix, we generated a population of n 5
50 random networks for each null model. Our statistic was P, the
probability of a random replicate being equally or more nested
than the observed matrix. To allow across-network comparisons,
that is, to account for variation in species richness and number
of interactions, relative nestedness is defined as N* 5 (N 2
N# R)yN# R, where N and N# R are the value of nestedness for the
actual matrix and the average nestedness of the random repli-
cates, respectively.

Results
Most mutualistic webs were highly nested (Fig. 2). The average 6
SE nestedness was N# 5 0.844 6 0.043 for seed dispersal and N# 5
0.853 6 0.047 for pollination (Fig. 2a). There were no significant
differences between both systems (F 5 0.098, df 5 1, 50, P 5
0.75), which suggests a common assembly process regardless of
the different nature of these mutualisms.

The fraction of networks that departed significantly (P , 0.05)
from randomly assembled webs was 0.70 for seed dispersal and
0.80 for pollination. These percentages, however, increased
dramatically beyond a minimum number of species. For exam-
ple, all seed-dispersal networks .28 species (40.7%) and all
pollination networks .50 species (72.0%) were significantly
nested (Fig. 2b).

To assess the generality of our results and to put them within
the context of other ecological webs, we also studied nestedness
in a set of 14 resource–consumer bipartite graphs extracted from
several detailed food webs (Table 1). Their level of nestedness
(N# 5 0.694 6 0.077) was significantly lower than for mutualistic
networks (their residual nestedness, after accounting for varia-
tion in species richness, differed significantly from both polli-
nator and seed-dispersal webs; F 5 7.71, df 5 1, 60, P 5 0.007;
Tukey’s honestly significant difference test; Fig. 2a). It is not
clear whether this difference reflects a different biological
organization or differences in sampling resolution.

Is the level of nestedness independent of the complexity of the
network? To answer this question, we begin by considering the
relationship between the number of species (S 5 A 1 P) and

the number of interactions (L), a question widely discussed in
food web studies (17–24). As shown in Fig. 3, our mutualistic
data fit a power-law relationship between L and S; that is,
log(L) 5 0.132 1 1.139 log(S), r 5 0.943, and P , 0.0001. The
slope of the log–log plot (1.139) is slightly higher than 1. This
means that L increases slightly faster than S, confirming early
results for food webs (24).

We calculated the residuals from the regression in Fig. 3.
Positive and negative residuals correspond to those matrices that
have more and fewer connections, respectively, than expected
from their number of species. We compared the average relative

Fig. 2. Nestedness values for seed dispersal (SD, circles), pollination (P,
squares), and food webs (FW, diamonds). (a) Mean and SE of nestedness for
the three types of networks. Seed-dispersal and pollination matrices have
similar nestedness, significantly higher than consumer–resource webs. (b)
Nestedness vs. species richness for all data sets. Each point corresponds to a
specific community and is solid if the level of nestedness is significant at the P ,
0.05 level and empty otherwise. The arrow indicates the plant–pollinator
network shown in Fig. 1c.

Fig. 3. Number of interactions (L) vs. number of species (S) for the mutualistic
networks (pollination and seed dispersal). The continuous line is the best fit to
data. The broken line represents the x 5 y axis. As noted, L increases slightly
faster than S (slope 5 1.139). All communities can be classified in two groups:
networks with fewer interactions than expected (negative residuals) and
networks with more interactions than expected (positive residuals). (Inset) The
average and SE of relative nestedness (N*) for the communities with positive
and negative residuals. Networks with positive residuals, that is, with more
interactions than expected for a specific number of species, are significantly
more nested than networks with fewer interactions than expected.
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value of nestedness (N# *) for both groups of residuals. Interest-
ingly enough, there are significant differences between them
(F 5 6.59, df 5 1, 50, P 5 0.013). For a given species richness,
communities with a larger than expected number of interactions
are significantly more nested than communities with a lower than
expected number of interactions. The mutualistic webs become
relatively more structured as their complexity (number of links
for a given number of species) increases.

Discussion
A long-standing challenge in food web theory has been to detect
the level of structure of food webs (21, 24–28). There is not
enough empirical support on how food webs are structured. For
example, attempts to find compartmentalization in food webs
have failed (refs. 25 and 27; see, however, refs. 28 and 29). The
question remains on whether this is due to the incompleteness of
the data or to the fact that complex networks are organized in
a different way. By analyzing the best resolved data set on
ecological networks, we have unambiguously shown that mutu-
alistic webs are neither randomly assembled nor compartmen-
talized, but are highly nested.

Some potential implications of nestedness for community
persistence can be drawn. First, nested networks are highly
cohesive; that is, the most generalist plant and animal species
interact among them generating a dense core of interactions to
which the rest of the community is attached (Fig. 1). Together
with highly heterogeneous distributions of the number of inter-
actions per species (11), this cohesive pattern can provide
alternative routes for system responses to perturbations. For
example, a species is more unlikely to become isolated of the
network after the elimination of other species when embedded
on a highly cohesive network. Second, nestedness organizes the
community in a highly asymmetrical way (Fig. 1), with specialist
species interacting only with generalist (and so less fluctuating)

(30) species. This asymmetrical pattern can provide pathways for
rare species to persist (7).

In relation to coevolution, previous studies have tradition-
ally focused on interactions between pairs of species. But, as
noted by Thompson, ‘‘studies of pair-wise interactions alone
are insufficient for understanding the evolution of interactions
in general and the coevolutionary process in particular’’ (ref.
6, p. 286; see also ref. 31). In this paper we have presented
empirical evidence for a highly significant structural pattern
with far-reaching consequences for coevolutionary interac-
tions in species-rich communities. Nestedness organizes com-
plex coevolving networks in a specific way between highly
specialized pairwise coevolution and highly diffuse coevolu-
tion. It results in both a core of taxa that may drive the
evolution of the whole community, and in asymmetric inter-
actions among species with different specialization levels. Our
data do not indicate the presence of compartments suggestive
of tight, parallel specialization. Rather, our results show that
specialized species are frequently dependent on a core of
generalist taxa. This macroscopic organization of coevolution-
ary interactions can be reduced neither to a collection of pairs
of coevolving species, nor to a collection of subwebs made up
of tightly integrated species. A nontrivial question that de-
serves further study is how the assembly pattern described in
this paper affects the coevolutionary process in species-rich
networks.
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